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A B S T R A C T   

Anthropogenic Heat (AH) emissions modify the energy balance in urban areas and is crucial for 
urban microclimate modelling and improved weather forecast modelling. Therefore, the present 
study conducted on Delhi and its surroundings firstly aims to estimate AH using Earth Obser
vation (EO) data of Landsat 8 then, evaluate the impact of detailed urban roughness parame
terization on the estimation of AH and further validate the obtained flux values with ground 
based observations of Large Aperture Scintillometer (LAS) setup. The study has been conducted 
over three time periods for October 2017, March 2018 and June 2018 by processing six Landsat 
tiles. Three methods have been employed on EO data for AH computation i.e. single urban 
roughness value for entire study area (Method 1), LULC based roughness values adopted from the 
literature (Method 2) and lastly, detailed pixel-by-pixel varying roughness values calculated from 
fine scale urban parameterization (Method 3) for each time period, The average AH values are 
higher for the month of June 2018: 359.91, 368.57 and 359.16 W/m2 as compared to month of 
March 2018 (322.44, 330.84 and 298.35 W/m2) and October 2017 (318.00, 331.04 and 306.71 
W/m2) for method 1, method 2 and method 3 respectively. Net radiation and Sensible Heat Flux 
shows a good correspondence with in-situ measurements for most of the tiles and method 3 shows 
better spatial distribution of fluxes as compared to other two methods. However, due to difference 
in approach for estimation of fluxes (LAS setup computes latent heat flux as residual while EO 
based approach computes AH as residual), conclusive results could not be drawn with respect to 
aptness of a single method. Accurate estimation of AH in urban areas can assist further in 
formulating policies, regulations and action plans related to mitigation and control of heat stress, 
climate change and improved weather forecasting.   

1. Introduction 

Estimation of Anthropogenic Heat (AH) in urban areas can be beneficial in understanding the modifications occurring in urban 
energy balance system. Growing urbanization significantly influences urban surface energy balance and led to consumption of 40% of 
the total energy and contribute to 86% to 96% in the total heat emissions, buildings with residential, commercial and industrial use and 
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transportation are the largest sources of AH in urban areas [1]. AH impacts the surface energy balance because it is related to the 
transfer of energy between land surface and atmosphere [2] and it is an important factor contributing to rising temperatures across the 
globe [3]. AH flux not only impacts the temperature, but it also results into release of air pollutants from domestic, industrial and 
vehicle emissions into the urban atmosphere [4]. These pollutants modify the net radiation budget and eventually warm up the 
ambient air. Thus, estimation of AH can prove to be helpful in quantifying the impact of human activities on the environment and in 
turn it can be used for addressing the rising global issues related to environmental change [5,6]. Review conducted by Chapman et al. 
[7] states that in spite of significant importance of AH in various urban phenomenon, it is an under-researched topic; and ignoring it 
could mean under-estimation of rising temperatures which may lead to poor understanding of climate change phenomenon. 

Anthropogenic Heat (AH) can be accounted from the process of human metabolism and release of waste energy from transportation 
services, building and industries [8]. The traditional methods for AH estimation included in-situ measurement of fluxes with 
spectro-radiometers mostly installed at roof-tops of buildings [9]. However, due to heterogeneity in urban areas, it is not feasible to 
conduct such measurements at a city-scale [10,11]. The inventory approach that makes use of spatially distributed energy con
sumption data from buildings and transportation along with other socioeconomic data can be used for a regional level AH estimation 
[2,9]. However, the limitation of this approach is that it is very data-intensive and it cannot be conducted very frequently at a finer 
resolution. Modelling approaches like Building Energy Use Approach [12–14], Surface Urban Energy and Water Balance Scheme 
(SUEWS) [15], Large scale Urban Consumption of Energy (LUCY) model [16], Weather Research Forecast (WRF) Model [17–19] etc. 
are other alternatives adopted for studying larger areas. However, few research studies [11,20–23] have made use of Earth Obser
vation (EO) datasets as it has a much greater potential for examining the urban energy fluxes at various spatial and temporal 

Fig. 1. Map showing the study area boundary and ground station location.  
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resolutions. In this approach, data from satellite images is used in a set of empirical and semi-empirical formulas to solve the energy 
balance equation and after placing all the flux values, AH is calculated as the residual [5,9]. 

There are a few studies available to derive AH from EO dataset [9,10,24] and this number is hardly a handful especially in 
developing region [21,23]. Kato & Yamaguchi [20] were the first ones to propose a remote sensing method that separates AH from 
sensible heat flux and it was applied on Nagoya city in Japan using Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), Enhanced Thematic Mapper Plus (ETM+) and meteorological data. Estimating AH with the help of canopy energy balance 
equation, ASTER data and meteorological data, research on Beijing found that AH has a role to play in the rising temperatures and 
urban heat island formation [9]. A spatio-temporal analysis using the Landsat data and energy balance equation showed that the 
magnitude of change in AH was the highest in Guangzhou city center compared to the hinterland [5]. Nitis et al. [25] calculated AH for 
the European cities using the ETM + dataset and the study showed that AH has a relationship with the magnitude of urbanization, 
economic activities and the living standards of the residents. For the Indian scenario, a study was conducted by Chakraborty et al. [21] 
over Delhi using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite datasets. It was observed that the area 
under settlement doubled over a decade from 2000 to 2010 while the increase in AH over the same was 2.5 times during winter and ≅
2 times during the summer season. Another study over English Bazar Town in West Bengal, India using Landsat dataset concluded that 
from the year 1990 to 2017, AH increased more than 5 times against an increase of 1.5 times in the area of impervious surfaces [23]. 

Amongst the different factors used in AH estimation, the calculation of aerodynamic resistance is the most difficult as it depends on 
highly variable spatial parameters i.e. urban roughness and displacement height. However, its estimation for urban areas is very 
complex and methods to estimate surface roughness and displacement height in detail are lesser researched for urban areas as 
compared to vegetation and agricultural land [11]. It can be seen from literature that most of the studies use constant roughness value 
(single roughness values for entire urban area or entire Land Use Land Cover (LULC) class), which is not the case in real context as cities 
have varying roughness depending upon the density, height and spacing of its roughness elements. Zhang et al. [11] stated that the 
non-uniform height of buildings in cities makes it difficult to precisely define urban roughness height; and furthermore, urban 
roughness calculation error is one of the errors that has a major influence on the over/under estimation of latent and sensible heat 
fluxes [11,26]. Globally, only a handful of studies are available which employs detailed urban roughness characteristics for compu
tation of urban energy fluxes whether it is a developed or developing region and none of the study has utilized detailed urban 
roughness characteristics for estimation of AH especially in the context of India. Besides, Authors’ team computed urban roughness 
characteristics using low cost widely available EO based very high resolution optical stereo data, which is an innovative approach for 
computation of detailed urban roughness characteristics [27]. Thus, this study attempts to address the research gap of not having many 
studies related to estimation of AH using detailed urban surface roughness parameterization especially in the Indian context. The 
hypothesis framed for the study is that usage of detailed urban roughness parameters improves the accuracy of AH estimation. Based 
on this, the following research questions were framed for this study: (1) How EO data can be utilized for estimating urban energy 
fluxes? and (2) What impact does the detailed urban roughness parameter values have on the calculation of the urban energy fluxes? 
(3) What are the uncertainties, challenges and limitations in the estimation of AH from EO data? 

2. Study area and datasets 

2.1. Study area 

The National Capital Territory (NCT) of Delhi and its surrounding region, an area of ~9,800 sq. km (Fig. 1) has been selected for 
conducting this research. It forms an interstate urban agglomeration that includes NCT of Delhi along with NOIDA and Ghaziabad in 
Uttar Pradesh state and Gurgaon and Faridabad in Haryana state. The population of this second largest urban agglomeration in India 
has increased by 21.6% from the year 2001 to 2011 [28,29]. The growth of population in surrounding towns is much higher up to 
260% in just one decade of 2001–2011. Increasing population leads to enhanced usage as well as release of energy resulting into rising 
AH. Furthermore, the statistics from the transport department show that the rate of increase in vehicle ownership in Delhi is more than 
twice the rate of population growth. It is well known that vehicle emissions are the second highest contributor in the AH generation 
[2]. Therefore, high population density in the city, high growth rate of population and rapid increase in vehicle ownership make this 
region highly susceptible to concentrated AH. Chakraborty et al. [21] researched that during the year 2000 to 2010, the area under 
industrial land use increased by 13% while the natural land cover like open scrub, open spaces and water reduced by 10.5%, 4.6% and 
0.38% respectively. Such major LULC transformations along with increasing population led to amplification of Land Surface Tem
perature (LST) and urban energy fluxes in the study region. 

The study area falls under two climate zones Köppen climate classification Cwa which is mostly monsoon influenced humid sub- 
tropical climate and Köppen climate classification BSh which is semi-arid mostly. Delhi is landlocked with proximity to the Himalayas 
in the northeast and the Thar Desert in the southwest due to which it experiences both extreme winters and extreme summers. Winters 
span from November to February peaking in January. The temperature drops down as low as 2◦ Celsius during December and January. 
Sun is often seen in the afternoon in winters as fog and mist cover the city in the mornings. Rainy winters are also observed which 
benefit the Rabi crops. The weather turns warmer by March and the month of April marks the start of summer. Till the month of June, 
summers are observed with temperature extremes of 45◦ to 46◦ Celsius. Hot and dry winds called the ‘loo’ originating from the desert 
blow during this time to this region. The region observes monsoon due to the moisture filled southwestern winds from the Arabian Sea. 
The duration of monsoon is generally from the end of June to September and the region receives 80% of its annual rainfall during this 
period. The average annual rainfall received by Delhi is approximately 714 mm [30]. 
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2.2. Datasets and material 

Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) tiles for (i) October 6, 2017 and October 15, 2017, 
(ii) March 8, 2018 and March 31, 2018 and (iii) June 3, 2018 and June 12, 2018 have been utilized in the calculation of fluxes using the 
EO data based approach (Table 1). This set of two tiles for one month have been used in the study as the entire study area was not 
covered in a single tile of same date. However, it is to be noted here that keeping into consideration the dynamic nature of various input 
parameters that are time sensitive, all the tiles for different dates have been processed separately. 

Parameters like air temperature, dewpoint temperature, U-component of wind and V-component of wind used in various steps for 
flux calculation have been obtained from ERA5-Land hourly data available at the spatial resolution of 0.1◦ × 0.1◦. ERA5 stands for 
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis data 5th generation and it is a product offered by the 
Copernicus Climate Change Service (C3S) at ECMWF. This atmospheric reanalysis dataset of ERA5 has a global coverage and it is 
available from 1950 to present date. Apart from the above listed datasets, various data/values from literature have also been used in 
the calculations as summarized in Table 1. 

Aerodynamic resistance values used for calculating the sensible heat flux and latent heat flux have been calculated using three 
distinct approaches. First approach uses a constant roughness value for entire study area (referred herein as Method − 1), second 
approach uses Land Use Land cover obtained using Landsat 8 OLI and values form literature for calculation of roughness values 
(referred herein as Method − 2) following the approach of Hu et al. [9] while third approach uses pixel by pixel varying Zom values 
(detailed urban roughness parameterization) obtained from Very High Resolution Satellite (VHRS) optical stereo data (Pleiades 
Panchromatic (PAN) and Multispectral (MX) of 0.5 m resolution and 2 m resolution respectively) for calculation of roughness and zero 
plane displacement height (referred herein as Method-3) (Table 1). 

In-situ observations of net radiation values from the Automatic Weather Station (AWS), sensible heat flux values from the Large 
Aperture Scintillometer (LAS) and ground heat flux values from soil heat flux plate were compared with the fluxes estimated using EO- 
based approach for each of the six Landsat tiles. Each of the above listed instruments are located in the premises of ICAR-IARI, Pusa 
campus, New Delhi. Further details regarding ground observations have been provided in section 3.5. 

Table 1 
Dataset used in the study.  

Parameters derived Sensor Date Spatial Resolution Purpose 

NDVI Landsat 8 OLI October 6, 2017 
October 15, 
2017 
March 8, 2018 
March 31, 2018 
June 3, 2018 
June 12, 2018 

30 m Surface Emissivity & Ground Heat Flux 
LULC Rsmin, & zom 

Albedo Net radiation & Ground Heat Flux 
Incoming Shortwave 

Radiation 
Net radiation 

Surface Emissivity Net radiation and LST 

Land surface 
temperature 

Landsat 8 TIR October 6, 2017 
October 15, 
2017 
March 8, 2018 
March 31, 2018 
June 3, 2018 
June 12, 2018 

30 m Net radiation, Ground Heat Flux, Sensible Heat 
Flux, and Stomatal Resistance 

Incoming Longwave 
Radiation 

ERA5-Land hourly data October 6, 2017 
October 15, 
2017 
March 8, 2018 
March 31, 2018 
June 3, 2018 
June 12, 2018 
(6:00 UTC) 

0.1◦ × 0.1◦; Native 
resolution 9 km 

Net radiation 

Air temperature Incoming longwave radiation, Sensible Heat 
Flux, Latent Heat Flux 

Dewpoint 
temperature 

Actual vapor pressure 

Wind speed Sensible Heat Flux and aerodynamic resistance 
Saturated vapor 

pressure 
Latent Heat Flux estimation 

Actual vapor 
pressure 

Latent Heat Flux estimation 

Roughness 
parameters 

Literature Sensible and Latent Heat Flux estimation 
Very high resolution PAN & 
multispectral optical satellite stereo 
(Pleiades) 

2012 to 2017 
(14 Scenes) 

0.5 m and 2 m 

Stomatal resistance Literature, Shortwave Radiation and LST Latent Heat Flux 
Flux observations Ground observations from Large Aperture Scintillometer (LAS), ICAR-IARI, Pusa 

campus, New Delhi 
Validation and Comparative evaluation of 
three approaches used for roughness 
calculation  
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3. Methodology 

3.1. Study design 

Owing to the availability of detailed urban surface roughness parameters for the year 2017 and in-situ measurement data for 
validation for 2017 and 2018, the present study was conducted for October 2017, March 2018 and June 2018 to test the aptness and 
uncertainty of the proposed methods. 

Surface Energy Balance (SEB) Model has been employed for computation of AH, whereas set of equations are employed to compute 
the Net Radiation (Rn), Ground Heat Flux (G), Sensible Heat Flux (H) and Latent Heat Flux (LE). AH has been calculated as the residual 
of SEB model (Equation (19)). All the urban energy fluxes have been calculated using three different methods based on difference in 
parameterization of urban roughness as explained in Section 2.2. Rn and G values derived for each of the three methods will be the 
same as there is no change in the variables used to derive these fluxes across the three methods. Employing the set of equations 
explained in Section 3.4.1 and 3.4.2, net radiation and ground heat flux were derived using Landsat 8 optical and thermal data along 
with ERA5 Land hourly data. 

Then, the sensible heat flux and latent heat flux were estimated by employing three methods as explained earlier. It is to be noted 
here that the equations used across the three methods are the same (Section 3.3) but the only difference lies in the estimation and use of 
urban surface roughness values (Zom). Method 1 uses a single Zom value across the entire study area, Method 2 uses Zom values 
referred from the literature and a single value being assigned to the entire LULC class and Method 3 uses pixel by pixel varying Zom 

Fig. 2. Methodology adopted to estimate anthropogenic heat flux in the present study.  
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values (detailed urban roughness parameterization). Other parameters used in sensible and latent heat flux estimation have been 
derived using Landsat 8 optical plus thermal data, ERA5 Land hourly data and literature. Lastly, the AH values obtained from all the 
three methods were validated with the ground data and a comparative analysis of the same was conducted (Fig. 2). 

3.2. LULC classification 

Supervised classification using Maximum Likelihood Classification (MLC) method was performed on Landsat 8 image tiles of 6th 
October and October 15, 2017. For classifying the image, a minimum of 10n (n = number of Landsat bands used for classification) 
training samples were taken and the land use land cover classification of the study area has been done into 5 broad categories namely 
(i) Waterbodies, (ii) Vegetation and Dense Agriculture, (iii) Agriculture and Urban Parks, (iv) Built-up and (v) Bare soil. Further, 
accuracy assessment of the classified mosaicked image was done by generating 50 ground truth points per LULC class with equalized 
stratified random sampling method. Finally, an error matrix with overall accuracy and kappa co-efficient was generated based on the 
classified values vs ground truth values. 

3.3. Urban roughness 

The urban fabric in cities is the roughest surface form [31]. The buildings are impermeable, hard and inflexible as compared to the 
vegetation due to which they reduce the wind flow causing surface drag [4]. Urban surface roughness is defined based on a set of 
parameters related to the urban morphology like zero plane displacement, roughness length, frontal area density, building plan area 
fraction, height to width ratio etc. and these can be estimated using morphometric or micrometeorological approaches. Urban 
roughness (zom) is an important parameter for sensible and latent heat flux calculation and has an impact on accuracy of AH estimation. 

Method-1 applies a single value of urban roughness values (z0m) estimated using Equation (1) [31] for the entire study area. In the 
equation below, h represents average obstacle height (in meters) and f0 is empirical constant value. 

z0m = f0h = 0.10 h# (1) 

Method-2 uses typical zom values adopted from the study by Kato & Yamaguchi [26] for each LULC class (Table 2). 
Detailed spatially variable surface roughness values, used in the present study for Method-3 has been derived as part of long term 

research conducted by the Authors’ team [27]. VHRS Optical Stereo Panchromatic (PAN) and Multi-spectral data of Pleiades 1A/1B 
satellite were employed to extract Digital Surface Model (DSM) and Digital Terrain Model (DTM). The normalized DSM (nDSM) was 
eventually derived as nDSM = DSM – DTM. Building heights from nDSM and building footprint area extracted from LULC classification 
were used to quantify building surface fraction. Building volume and mean building height were calculated to further compute 
volumetric averaged building height (hvk) using building footprints and nDSM. Zero plane displacement was estimated using building 
surface fraction and volumetric averaged building height (hvk). It is to be noted here that application of freely available Urban 
Multi-scale Environmental Predictor (UMEP) tool [32] in the study area could not provide satisfactory results for the computation of 
roughness characteristics in the dense and complex urban environment of study area [33] and Urban Morphology Extractor (UME) 
tool, developed by the authors’ team [33], were employed to compute Frontal area index (λf ) [33], which is further employed for 
computation of zom in the study area. Mathematically, the area of vertical wall surface in a specific wind direction divided by the unit 
horizontal surface area gives frontal area index. Finally using all the above calculations, detailed surface roughness (zom) values were 
estimated for Delhi by employing the morphometric approach (Equation (2)) [34]. 

zom =(hvk − Zd)exp

(

−
k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.5λf Cdh

√

)

# (2)  

Where hvk is volumetric averaged building height, Zd is zero plane displacement height, k is Von Karman’s constant (k = 0.4), λf is 
frontal area index in a particular wind direction and Cdh is drag coefficient dependent on obstacle shape. 

3.4. Energy balance equation 

The energy balance equation is usually represented as shown in Equation (3) [15]. 

Table 2 
Accuracy assessment results, surface roughness values (zom) and minimum resistance values (rsmin) for each LULC class.  

Sr no. LULC type Accuracy z0mvalue rsMIN values 

1 Water 95.24% 0.00003 0 
2 Vegetation 83.33% 0.5 60 
3 Agriculture 83.33% 0.1 90 
4 Built-up 92.86% 1.5 – 
5 Bare soil 92.85% 0.001 500   

Overall Accuracy 91.27%     
Kappa 0.90    
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Rn = G + LE + H# (3)  

Where, Rn is net radiation, G is ground heat, LE is latent heat and H is sensible heat fluxes. But in urban areas, apart from the natural 
heat the anthropogenic activities (A) also add on to the energy balance. So, Equation (4) represents the urban energy balance equation. 
The present study estimates anthropogenic heat (AH) as the residual of the urban energy balance equation [15]. 

Rn + AH = G + LE + H# (4)  

Where, Rn is net radiation, G is ground heat, LE is latent heat, H is sensible heat fluxes and AH is Anthropogenic Heat. 

3.4.1. Net radiation 
Net radiation is the balance of the addition of net longwave radiation and net shortwave radiation (Equation (5)) and it has been 

estimated as [9,15]. 

Rn = (1 − α)RS↓ + RL↓ − RL↑ − (1 − εo)RL↓# (5)  

Where, Rn is net radiation, α is albedo, Rs↓ is incoming shortwave radiation, RL↓ is incoming longwave radiation, RL↑ is outgoing 
longwave radiation and εo is surface emissivity. 

In this study, surface albedo has been calculated using the formula given by Waters et al. [35] and the equation requires top of 
atmosphere albedo (αTOA) which was calculated using the equation adopted by Beg et al. [36]. 

Here, Surface albedo has been calculated using SEBAL formula [35]. 

α =
αTOA − αpathradiance

τsw
2 # (6)  

In Equation (6), αpath radiance is the average of incoming solar radiation across all the bands that is back-scattered to the satellite before it 
reaches the surface of the earth. Its value has been taken as 0.03 [35]. The top of atmosphere albedo (αTOA) was calculated using 
Equation (7) [36] and τsw is transmissivity. 

αTOA = 0.356ref2 + 0.326ref3 + 0.138ref4 + 0.084ref5 + 0.056ref6 + 0.041ref7 # (7)  

Here, refi is the reflectance values of the respective band. 
Shortwave radiation, incoming longwave radiation and outgoing longwave radiation have been estimated with the set of formulas 

given by Waters et al. [35]. Surface emissivity has been estimated using the Normalized Difference Vegetation Index (NDVI)-based 
emissivity method (NBEM) by following the approach employed by Nikam et al. [37]. 

To derive the above-mentioned parameters, there is a requirement to input air temperature (Ta) and Land surface temperature (Ts) 
values in the equations. Therefore, the values of air temperature were retrieved from the 2 m Temperature dataset of ERA-5 Land 
hourly data while the LST for the study area was calculated by applying the Radiative Transfer Equation (RTE) on Landsat-8 thermal 
dataset. Landsat-8 has two thermal bands capturing data in the wavelength region of 10.60 to 12.51 μm and these bands can be utilized 
for application of Split-Window (SW) algorithm for land surface temperature retrieval. However, application of SW algorithm has a few 
limitations in estimating water vapor content and land surface emissivity because the universal parameters applicable to the SW al
gorithm are not yet available for Landsat-8 [37] and besides it is observed that RTE method using single TIR band provide accurate 
results better than SW algorithm [38]. It has also been observed that the accuracy of band 11 in Landsat-8 is dubious due to the stray 
light problem and so, usage of band 10 for LST calculation is more preferable [39]. Therefore, in this study band 10 has been used for 
land surface temperature estimation using RTE. The atmospheric correction parameters required in the equation including up-welling 
path radiance (I↑

i , ), down-welling path radiance (I↓
i ) and atmospheric transmittance (τi) have been extracted from the online ‘At

mospheric Correction Parameter Calculator’ that uses National Centers for Environmental Prediction (NCEP) data. 

3.4.2. Ground heat flux 
Ground heat flux (G) has been estimated using Equation (8) [35]. 

G
Rn

=
Ts

α
(
0.0038α + 0.0074α2)( 1 − 0.98NDVI4)# (8)  

Where, Rn is the net radiation, Ts is the land surface temperature and α is albedo (same as derived for net radiation [36]). 

3.4.3. Sensible heat flux 
Sensible heat flux has been calculated using Equation (9) and Equation (10) [35]. 

H =
ρCpdT

ra
# (9)  

dT = Ts − Ta# (10)  

In the above equations, ρ is the air density (1.2 kg/m3), Cp is the specific heat of air at constant pressure (1005 J/kg K) and dT is the 
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temperature difference between the land surface temperature (Ts) and atmospheric temperature (Ta). ra which is the aerodynamic 
resistance has been estimated with the formula given in Equation (11). 

ra =

ln
(z2

z1

)

u∗k
#

(11)  

Here, z1 and z2 are the minimum and maximum heights respectively of the built-up in the study area. Then, k is von Karman’s constant 
(0.41) and u∗ is the friction velocity (in m/s). The value of u∗ is computed using Equation (12) [15,25]. 

u∗ =
k ux

ln
( zx

zom

) #
(12) 

The friction velocity is calculated using the values of known wind speed (ux) at height zx. For the present study, ERA5 wind speed 
data at 10 m height has been put into equation (12) for calculation and z0m is the roughness height for momentum transfer (in meters) 
(Section 3.2). 

Unlike net radiation and ground heat flux values that are the same for all the three methods, the values for sensible heat flux and 
latent heat flux calculated change in each of the three methods due to distinct urban surface roughness (z0m) values. 

3.4.4. Latent heat flux 
Latent heat flux has been calculated using Equation (13) [26]. 

LE =
ρCp
(
e∗s − ea

)

γ(ra + rs)
# (13)  

In the above equation, ρ is the air density (1.2 kg/m3), Cp is the specific heat of air at constant pressure (1005 J/kg K), γ is the psy
chrometric constant (0.67 hPa/K), e∗s is saturated vapor pressure, ea is actual vapor pressure, ra is aerodynamic resistance and rs is 
stomatal resistance. e∗s and ea have been calculated using Equation (14) and Equation (15) respectively [40]. The dewpoint temper
ature (Tdew) used in the following Equation (15) has been retrieved from ERA5-Land hourly data. 

e∗s = 0.6108 ∗ exp
[

17.27 ∗ Ts

Ts + 237.3

]

# (14)  

ea = 0.6108 ∗ exp
[

17.27 ∗ Tdew

Tdew + 237.3

]

# (15) 

Nishida et al. [41] has given a modified formula for calculating rs using only remote sensing parameters and the same formula has 
been used in this study (Equation (16)). 

1
rs
=

f1(Ta) f2(PAR)
rsMIN

+
1

rcuticle
# (16)  

Here, rsMIN is the minimum resistance and the values for the same have been taken based on land use land cover category as listed in 
Table 2 [26]. 

And, f1(Ta) and f2(PAR) in Equation (16) are the functions of temperature and photosynthetic active radiation (PAR) respectively 
that can be estimated using the following set of formulas (Equation (17), Equation (18) and Equation (19)). 

f1(Ta) =

(
Ta − Tn

To − Tn

) (
Tx − Ta

Tx − To

)

(
Tx − To
To − Tn

)

#
(17)  

f2(PAR) =
PAR

PAR + A
# (18)  

PAR = Rs ∗ 2.05# (19) 

Table 3 
Parameters for calculating rs.  

Parameter Value 

Cuticle resistance (rcuticle) 100,000 sm-1 

Minimum temperature for stomatal activity (Tn) 2.7 ◦C 
Maximum temperature for stomatal activity (Tx) 45.3 ◦C 
Optimal temperature for stomatal activity (To) 31.1 ◦C 
Photon absorption efficiency (A) 152 ◦C  
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The values of certain parameters for estimation of f1(Ta) and f2(PAR) have been taken from the study conducted by Nishida et al. 
[41] (Table 3). 

3.4.5. Anthropogenic heat flux 
From radiant heat balance, the sensible heat can be calculated as shown in Equation (20) [21]. 

Hn = Rn − G − LE# (20)  

And finally the sensible heat flux due to anthropogenic effects (Has) can be expressed as shown in Equation (21). In case the value of H 
is smaller than that of Hn in Equation (21), H can be replaced with Hn to solve the formula [13]. 

Has = H − Hn# (21)  

3.5. Validation of urban energy fluxes 

It can be inferred from the literature review that validation is one of the most popular approaches of uncertainty assessment in EO 
data based methods [42] and therefore, the present study uses in-situ measurements of net radiation, sensible heat flux and ground 
heat flux for validation. The comparative evaluation of surface energy fluxes was done using the Large Aperture Scintillometer (LAS) 

Fig. 3. Land use land cover map.  

M.M. Bhatt et al.                                                                                                                                                                                                      



Heliyon9(2023)e18361

10

Table 4 
LULC class wise analysis of mean flux values for each method.    

October 2017 March 2018 June 2018 

Vegetation Agriculture Built-up Bare Soil Vegetation Agriculture Built-up Bare Soil Vegetation Agriculture Built-up Bare Soil 

Rn (in W/m2) 505.34 477.34 461.50 422.47 470.18 458.35 449.86 425.74 428.92 409.99 404.15 383.83 
G (in W/m2) 72.33 69.97 77.40 77.10 65.51 63.24 67.05 64.64 78.46 77.77 78.80 76.82 
H (in W/m2) Method 1 25.79 37.65 42.28 73.53 44.79 51.47 50.81 67.89 − 198.14 − 124.08 − 68.04 − 75.08 

Method 2 15.29 14.51 36.46 22.12 25.81 20.54 45.44 18.93 − 99.44 − 43.24 − 71.32 − 25.01 
Method 3 4.72 10.40 44.83 38.33 31.38 31.16 74.08 60.98 − 165.92 − 77.17 − 72.27 − 65.96 

LE (in W/m2) Method 1 303.19 262.76 23.81 105.76 261.62 212.25 9.56 78.88 869.99 601.11 33.49 183.69 
Method 2 214.22 152.91 16.59 68.57 183.58 121.99 6.53 50.84 767.19 502.91 29.36 160.05 
Method 3 283.09 208.28 22.38 85.44 222.11 160.38 10.78 70.07 812.68 545.24 38.83 172.64 

Has (in W/m2) Method 1 104.03 106.95 318.00 166.08 98.26 131.39 322.44 214.32 − 321.39 − 144.81 359.91 198.41 
Method 2 203.50 239.94 331.04 254.69 195.28 252.58 330.84 291.33 − 321.33 − 129.71 368.57 180.22 
Method 3 120.36 172.20 306.71 212.03 151.18 203.57 298.35 230.04 − 299.87 − 137.77 359.16 208.58  
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set-up which is installed in the premises of ICAR-IARI, Pusa campus, New Delhi. This set-up of LAS has transmitter and receiver end 
which are at the distance of 990 m for the detailed observations of surface energy fluxes. LAS set-up is one of the kind of high end 
sensing instrumentation which measure the sensible heat flux at 5 min interval and its functioning is based on the principle of 
Monin-Obhukov Similarity Theory (MOST). This set-up also comprises Automatic Weather Station (AWS) for measurement of net 
radiation by net radiometer and soil heat flux by soil heat flux plate. This entire set-up provided the observations of the all components 
of surface energy fluxes. This entire path length of the instrumentation is located over an irrigated agricultural landscape. The maize 
and wheat are the predominant crops during Kharif (Mid-June to October) and Rabi (Mid-November to April). Thus, there are more 

Fig. 4. Net radiation map for (a) October 6, 2017 (b) October 15, 2017 (c) March 31, 2018 (d) March 8, 2018 (e) June 3, 2018 and (f) June 
12, 2018. 
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agricultural/crop fraction in October and March months while June depicts the fallow or bare land parcel observations. The campus 
being located within the city area is surrounded by mostly built-up. The data retrieved from LAS set-up has been used for comparative 
analysis of the estimated fluxes. 

Fig. 5. Ground heat flux map for (a) October 6, 2017 (b) October 15, 2017 (c) March 31, 2018 (d) March 8, 2018 (e) June 3, 2018 and (f) June 
12, 2018. 
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Fig. 6. Sensible Heat Flux for 6th and October 15, 2017 obtained using (a) Method 1 (constant Zom) (b) Method 2 (LULC-based Zom) (c) Method 3 
(Detailed Zom). 
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4. Results 

4.1. Input parameters for energy balance approach 

The LULC classification (Fig. 3) shows the built-up of Delhi being extracted in the central part of the image followed by Gurugram to 
the southwest, Noida and Faridabad in the southeast and Ghaziabad to the east. Other cities, towns and village cores are also classified 
into built-up while the Malcha forest and Asola forest to the south are classified into vegetated areas. The rest of the study area is either 
agriculture or bare soil. The overall accuracy of the MLC based LULC classification is found to be 91.27% with a kappa co-efficient of 
0.90 (Table 2). 

4.2. Net radiation 

Vegetation class is observed to have the maximum net radiation in all the three months (505.34, 470.18 and 428.92 W/m2 for 
October 2017, March 2018 and June 2018 respectively) followed by agriculture class (477.34, 458.35 and 409.99 W/m2 for October 
2017, March 2018 and June 2018 respectively), built-up (461.5, 449.86 and 404.15 W/m2 for October 2017, March 2018 and June 
2018 respectively) and bare soil (422.47, 425.92 and 383.83 W/m2 for October 2017, March 2018 and June 2018 respectively) in a 
decreasing order of values (Table 4). Urban settlement or built-up in the center of the study area is seen to have comparatively lower 
net radiation than the agricultural land and vegetation in all the three seasons because the nature of storing heat is not at its peak at the 
time of satellite pass that is around 10:54 a.m. (Fig. 4 (a)-(f)). Overall, the highest net radiation is observed in the month of October 
while the least is noted for all the LULC classes during June which is the pre-monsoon shower period. 

4.3. Ground heat flux 

Built-up is observed to have the highest average ground heat flux amongst all the LULC classes with values of 77.40, 67.05 and 
78.80 W/m2 for October 2017, March 2018 and June 2018 respectively and amongst the three time periods, it is the highest for June 
2018 (Fig. 5 (a)–(f) and Table 4). The difference between the ground heat flux values of different LULC classes is higher in October 
2017 and it is the least for June 2018 (Table 4). The same is visually discernible from Fig. 5 as well where the distinction between LULC 
classes is visible for October 2017 with bare soil having highest ground heat flux while on the other hand, urban areas and its adjoining 
areas both have high ground heat flux. However, a comparison between the three time periods shows that ground heat flux values of all 
the LULC classes are the least in the month of March as compared to June and October months which are the pre-monsoon and post- 
monsoon time periods respectively. 

4.4. Sensible heat flux 

Sensible heat flux values obtained using the first method results into bare soil LULC class having the highest values of 73.53 and 
67.89 W/m2 for October 2017 (Fig. 6a) and March 2018 respectively. However, using the second method, sensible heat flux values for 
built-up class is the highest with values 36.46 and 45.44 W/m2 for October 2017 (Fig. 6b) and March 2018 respectively. The same 
trend of built-up class having the highest sensible heat flux values is seen in method 3 as well with sensible heat flux values of 44.83 and 
74.08 W/m2 for October 2017 (Fig. 6c) and March 2018 respectively. 

Sensible heat flux values for all the LULC classes obtained using method 2 are lower in comparison to method 1 in general. Whereas, 
method 3 shows lower sensible heat flux values all three LULC classes except built-up class as compared to method 1 (Table 4). 
However, the overall sensible heat flux values of all the LULC classes derived using method 3 lies in between the range of values 
obtained from method 1 and method 2 in case of March 2018 and June 2018 but for October 2017, these values obtained in method 3 
are least amongst the three methods. 

Built-up class being highest in method 1 and bare soil class being highest in method 2 and 3 amongst all LULC classes is true in case 
of sensible heat flux for June 2018 as well. But the only difference is that the sensible heat flux values for all the classes are in negative 
which denotes energy transfer from surface to atmosphere. The possible reason for the same can be that it is the time just before the 
rainy season starts in the study area so the ground is cooling and water vapor condensation occurs. 

A comparison between the three time periods i.e. October 2017, March 2018 and June 2018 shows that the sensible heat flux for all 
the LULC classes show a trend where values are highest during March followed by October month and the values are noted to be in 
negative for the month of June. Thus, it can be observed that pre-monsoon shower period observes least sensible heat flux in the Delhi 
region and this is true for results obtained from all the three methods. 

Sensible heat flux values are highest for first method and least for the second method for all the three time periods and the values 
obtained through the third method with detailed urban roughness values lies in between the two for the three time periods. However, a 
comparison between the average sensible heat flux values of different LULC classes show that there is a maximum difference in be
tween the LULC classes in method 3 followed by method 1 and method 2 respectively. The same can be interpreted from Fig. 6 (a), 
Fig. 6 (b) and Fig. 6c where method 3 shows more spatial segregation of flux values across the LULC classes because of inclusion of 
detailed urban roughness. In October 2017 and March 2018 results, the dense urban built-up, industries and market along the railway 
line in the northwest part of Delhi can be identified with higher sensible heat flux. The airport building is visible in dark red showcasing 
high sensible heat flux. The compact built-up near the river on the east and towards the farther western end is seen to have moderate 
sensible heat flux values. On the other hand, the central part of the city with dense trees is found to have the least sensible heat flux and 
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Fig. 7. Latent Heat Flux for 6th and October 15, 2017 obtained using (a) Method 1 (constant Zom) (b) Method 2 (LULC-based Zom) (c) Method 3 
(Detailed Zom). 
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the forest ranges to the south of the city are identified with low sensible heat flux (Fig. 6). 

4.5. Latent heat flux 

Latent heat flux shows nearly opposite trend and pattern as compared to sensible heat flux as generally observed by other re
searchers as well. Vegetation and agriculture have higher latent heat flux than the bare soil class and built-up class (Fig. 7 a, b and c). 
The highest latent heat flux values are noted for vegetation class using all the three methods in all the three time periods (Table 4). June 
2018 is noted to have highest latent heat flux for vegetation class amongst the three time periods using all the three methods (869.99 
W/m2 for method 1, 767.19 W/m2 for method 2 and 812.68 W/m2 for method 3). Agriculture class observes the second highest latent 
heat flux values for all the three time periods and in all the three methods. Amongst the LULC classes, built-up class is noted to have the 
least latent heat flux values for all the three time periods. A seasonal comparison of the latent heat flux values for built-up class shows 
that the month of March has the least values (9.56 W/m2 for method 1, 6.53 W/m2 for method 2 and 10.78 W/m2 for method 3) as 
compared to the June (monsoon) and October (post-monsoon) time periods. However, it should be noted that unlike certain studies 
that assume the latent heat flux to be zero for urban areas [20], this study has considered the fact that urban green spaces and 
vegetation within the extent of urban area influence the estimation of heat fluxes in built-up area. 

A comparison between the latent heat flux values obtained using the three different methods, the values derived using method 1 is 
the highest while that derived using method 2 are the least. The range of flux values obtained using detailed urban roughness 

Fig. 8. Anthropogenic Heat Flux for October 2017 obtained using (a) Method 1 (constant Zom) (b) Method 2 (LULC-based Zom) (c) Method 3 
(Detailed Zom). 
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parameterization in method 3 lie in between the other two methods. 

4.6. Anthropogenic heat flux 

Amongst all the LULC classes, built-up class observes the highest AH values in all the three time periods and this is true in case of AH 
values obtained using all the three methods (Table 4). Out of the three time periods, June 2018 has the highest AH values for built-up 
class (359.91 W/m2 for method 1, 368.57 W/m2 for method 2 and 359.16 W/m2 for method 3). Out of the three methods, method 2 is 
observed to have the highest AH values while method 3 has the least AH values for all the three time periods (Table 4). 

In October 2017, built-up areas have AH values greater than 250 W/m2 for method 1 (Fig. 8a), method 2 (Fig. 8b) and method 3 
(Fig. 8c). The average AH values estimated for October 2017 are 318 W/m2 using method 1, 331.04 W/m2 using method 2 and 306.71 
W/m2 using method 3 respectively. In March 2018, majority of the built-up areas can be seen to have AH values in range of 250 to 350 
W/m2 in all the three methods (Fig. 9a, b and c) but the proportion of areas having AH greater than 350 W/m2 is the least in method 3 
(Fig. 9c) and highest in method 2 (Fig. 9b). As compared to the other two time periods where most of the built-up observed AH values 
within the range of 250 to 350 W/m2, most of the built-up in June 2018 has AH greater than 350 W/m2. 

AH values obtained using method 2 for the rest of non-built-up classes like vegetation, agriculture and bare soil shows that there is 
an overestimation as compared to method 1 and 3 for October 2017 and March 2018 time periods. This can be easily visualized from 
Fig. 8 for October 2017 and Fig. 9 for March 2018 where clear distinction between the urban core vs. surrounding LULC classes is not as 

Fig. 9. Anthropogenic Heat Flux for March 2018 obtained using (a) Method 1 (constant Zom) (b) Method 2 (LULC-based Zom) (c) Method 3 
(Detailed Zom). 
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sharp as the one seen for method 1 and method 3. However, this trend is not seen in case of June 2018 and there is a sharp distinction 
between the built-up vs non-built-up classes in all the three methods (Fig. 10 (a)-(c)). Unlike October 2017 and March 2018, in June 
2018 all the non-built-up classes shows negative AH values estimated using each of the three methods. 

Spatial distribution of AH for the Method 3 is found to be the best for all the three time periods (Figs. 8–10). The use of detailed 
urban roughness layer in the third method results into better spatial representation of AH values which is otherwise not discernible in 
rest of the methods. A clear depiction of roads and paved surfaces with high anthropogenic heat values is seen. Urban green spaces in 
the neighborhoods can be observed to have lower AH value. The central part of Delhi near Connaught place has the least AH values due 
to the presence of dense trees. The newly developing areas of Noida in the southeast and that of Gurugram in the southwest can be seen 
to have the highest AH due to the presence of a lot of high-rise structures in that areas. The densely built neighborhoods in the northern 
part of Faridabad and certain industrial areas have AH value crossing the mark of 350 W/m2 in all the three time periods. Also, the 
average AH values calculated in this method for all the LULC classes are not as high as the second method. 

4.7. Validation with ground observations 

In-situ measurements of net radiation, sensible heat flux, ground heat flux and latent heat flux from LAS set-up at IARI campus were 
retrieved for all the three time periods and compared with the results obtained from each of the three methods. It is to be noted that net 
radiation and ground heat flux values are the same for all the three methods while the calculation of sensible and latent heat flux varies 

Fig. 10. Anthropogenic Heat Flux for June 2018 obtained using (a) Method 1 (constant Zom) (b) Method 2 (LULC-based Zom) (c) Method 3 
(Detailed Zom). 
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as per the level of detailing in urban roughness values. A comparison of flux values for all the six tiles (2 tiles representing one-time 
period of that respective month) has been done with the in-situ measurement at the respective satellite overpass time. 

Net radiation flux values estimated from EO data based approach are in close correspondence with in-situ measurements for almost 
all the tiles with a mean difference between the in-situ values vs. estimated values is − 16.17 W/m2 except one tile in March where EO 
data overestimated the net radiation with a value of − 154.55 W/m2 (Table 6). There is an overestimation of net radiation values for 
October 2017 and March 2018 while the values are underestimated for June 2018 in the EO data based approach as compared to the in- 
situ measurements. 

The estimated ground heat flux values of 78.73 and 76.95 W/m2 for 6th and October 15, 2017 respectively has a larger variation 
from the LAS set-up in-situ measurement value of 12.43 W/m2. A similar overestimation of 40.9 and 42.47 W/m2 has been observed for 
3rd and June 12, 2018 respectively (Table 6). While the least difference between in-situ measurement and EO data based approach can 
be noted for March 8, 2018 (21.16 W/m2) and March 31, 2018 (21.27 W/m2). 

Sensible heat flux values obtained from all three methods shows close correspondence to the in-situ measurement values except in 
case of June 2018. The sensible heat flux at ground observation site is 66.80 W/m2 while sensible flux obtained from all three methods 
ranges from 54.45 to 60.99 W/m2 for October 2017. However, the method-3 which uses detailed urban roughness parameterization 
(sensible flux value of 60.99 W/m2) is the closest to the field observation (66.80 W/m2) for October 2017. Method-1 with single 
roughness value for the entire study area (sensible heat flux of 60.24 W/m2) also shows close correspondence with ground data as 
compared to the second method which uses roughness value from the literature as per the LULC classes. In case of March 2018, the 
sensible heat flux values for method 2 has least difference between in-situ measurement and EO data based approach (− 6.46 and 
− 13.11 W/m2 for March 8, 2018 and March 31, 2018 respectively). While June month shows large overestimation of 106.25 W/m2 for 
June 3, 2018 and an underestimation of 195.14 W/m2 for June 12, 2018 (Table 6). 

Validation of latent heat flux and AH could not be carried out as LAS setup do not provide observations on these two fluxes. Besides, 
comparative assessment of the flux values for each LULC class cannot also be carried out as LULC class-wise in-situ measurement was 
not available. 

5. Discussion 

5.1. Estimation of urban energy fluxes 

The present study demonstrates successfully the potential of EO data for estimation of spatial distribution of AH and surface energy 
fluxes in an Indian urban area i.e. Delhi region. The availability of information on AH from EO data in this region is crucial as urban 
areas in this region experience high urban growth and pollution levels due to increasing population pressure and density. The study has 
large potential to be replicated globally especially in the countries of developing region such as Asia, Africa and Latin America having 
similarities to the study area where paucity of detailed inventory on population, transportation and industrial activities limits the use 
the inventory based approaches at finer scales for estimation of AH. 

The study also demonstrates the impact of detailed urban roughness parameterization obtained using VHRS Optical stereo on the 
estimation of surface urban energy fluxes which resulted in better spatial distribution of all surface energy fluxes especially AH. It is 
also noted that estimation of urban fluxes using constant roughness value for entire urban area also provide reasonable results in terms 
of spatial distribution. 

The close correspondence of net radiation observed through AWS and estimated from EO data for most of the dates highlights the 
potential of EO data for estimation of urban surface energy fluxes at high resolution. A comparison of the mean estimated albedo values 
and mean emissivity values from EO data based approach also shows close corroboration with the values found in literature. The 
calculated mean values of albedo and emissivity for all the LULC classes fall within the ranges defined by Oke et al. [4] in his study 
(Table 5). 

AH estimated in this study (mean AH value of 318.33 W/m2 for October 2017, 317.21 W/m2 for March 2018 and 362.55 W/m2 for 
June 2018) shows close correspondence with the studies conducted earlier in Delhi region [21] for a time period of 2000 to 2010 which 
showed an increase in anthropogenic heat values from 158.01 to 217.77 W/m2. 

5.2. Bowen ratio 

In most of the studies, Bowen ratio which is the ratio of sensible heat flux to latent heat flux is used for comparison as it is difficult to 

Table 5 
Comparison of Albedo and surface emissivity.  

LULC Class Mean Albedo in 
study area 

Albedo range from study by Oke 
et al. (2017) 

Mean surface emissivity in 
study area 

Surface emissivity range from study by 
Oke et al. (2017) 

Vegetation and dense 
agriculture 

0.19 0.16 to 0.26 (low vegetation) 
0.13 to 0.20 (decidous forests) 

0.978 0.90 to 0.98 (low vegetation) 
0.90 to 0.99 (decidous forests) 

Agriculture 0.20 0.18 to 0.25 (crops) 0.974 0.90 to 0.99 (crops) 
Built-up 0.22 0.09 to 0.23 (Urban) 

0.11 to 0.24 (Sub-urban) 
0.980 0.94 to 0.96 (Urban & Sub-urban) 

Bare Soil 0.24 0.18 to 0.30 (light color dry soil) 0.978 0.89 to 0.98 (light color dry soil)  
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compare absolute flux values across cities as the fluxes vary greatly according to location and time of the study. Amongst the three 
methods, method 2 gives the highest Bowen ratio for all the three time periods, followed by method 3 and lastly, method 1. The Bowen 
ratio observed over the study area in October 2017 is 1.99, 2.19 and 2.00 using method 1, 2 and 3 respectively and 2.03, 2.42 and 1.86 
for June 2018 using method 1, 2 and 3 respectively which is close to the ratio value of 2.55 for Basel city [4]. The predominant built-up 
characteristic of Basel city is compact mid-rise, which resembles to that of Delhi. However, a comparison of Bowen ratio obtained for 
March 2018 is approximately 6 which is close to the value reported for Vancouver (5.42) [4]. The reason for an increased Bowen ratio 
in March is due to decreased latent heat flux during that season. 

5.3. Challenges, uncertainties and limitation in measurement of fluxes from EO data 

Moderate to large deviation from ground based observations in estimation of ground heat flux and sensible heat flux from EO data is 
may be due to the difference in measurement approach in both the techniques. The ground instrument measures net radiation, ground 
heat flux and sensible heat flux which is put into the energy balance equation to obtain latent heat flux as the residual. It does not take 
into consideration AH separately while solving the energy balance equation unlike the way it is done in EO data based approach. 
Therefore, the in-situ measurement values of the fluxes might have AH component into any or all of the fluxes due to which the 
estimated flux values might not exactly match the ground observed flux values. Hence, one to one comparison of both techniques for all 
fluxes except net radiation may not yield conclusive results. However, since no other ground observations was available, it is being 
used in this study for validation of obtained results. More number of observations over varying land cover and urban densities may 
assist to validate the results in much better way in future. Besides, ground heat flux depends on the type of land cover, water content in 
the soil and net radiation. The location of the field instrument (Fig. 1) is such that the nearby land is constantly irrigated for conducting 
agricultural studies due to which the ground heat flux of the immediate surrounding at the given time can be noted to be low or 
underestimated. 

One of the main reasons of variation between the in-situ measurement and EO data based approach might be due to difference in 
footprint of both estimations. The observations taken from the LAS set-up are point data with a path length of 990 m that are being 
compared with a pixel of 30 m. The set-up being in the city area, there is a mixing of varied land use inside the 30 m pixel which is being 
measured with the flux value at a single point, a limitation reported by earlier studies as well. Additionally, it should be noted that the 
flux observations recorded by LAS set-up are at a 5-min interval which is not available for the exact time of satellite overpass for 
comparison with flux values estimated using the EO data based approach. Therefore, an average of the recorded in-situ flux values from 
the two nearby time intervals has been used in the study for validation. 

The distribution of LST significantly impacts the computation of sensible heat flux and subsequently the computation of AH. It can 
be observed that bare soil shows highest mean LST, while mean LST of built-up class does not show significant variation with respect to 

Table 6 
Comparison of Surface Energy fluxes obtained with ground observations.   

LAS Observation Method 1 Method 2 Method 3 

06-Oct-17 
Rn 436.8 479.6 
G 12.43 78.73 
H 66.8 60.24 54.45 60.99 
Residual 357.57 340.63 346.42 339.88 
15-Oct-17 
Rn 323.90 400.51 
G 17.09 76.95 
H 83.39 88.65 16.50 44.62 
Residual 223.42 234.91 307.06 278.94 
08-Mar-18 
Rn 267.70 422.25 
G 44.68 65.84 
H 42.01 48.47 40.75 33.77 
Residual 181.02 307.94 315.66 322.64 
31-Mar-18 
Rn 400.10 444.35 
G 50.68 71.95 
H 121.41 134.52 121.59 158.60 
Residual 228.01 237.88 250.81 213.80 
03-Jun-18 
Rn 447.00 386.69 
G 40.33 81.23 
H 170.00 276.25 249.70 222.95 
Residual 236.67 29.21 55.76 82.51 
12-Jun-18 
Rn 407.25 384.75 
G 36.67 79.14 
H 251.45 56.31 50.89 50.73 
Residual 119.13 249.29 254.71 254.87  
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vegetation and agriculture class. The possible reason for this phenomenon is that Delhi region tend to show ‘Urban Cool Island Effect’ 
during the early half of the day [43,44] due to the presence of mostly arid and semi-arid natural cover. So, at the time of satellite pass i. 
e. around 10:55 a.m., the LST noted from the built-up area in the urban core is lesser than that of the bare soil and fallow agricultural 
land located in the periphery of the urban area. The net radiation of the built-up as well is seen to be falling within moderate range 
because the nature of storing heat is not at its peak during the time at the time of satellite pass. Besides, LST being one of the important 
parameter for computation of surface fluxes, uncertainties in LST estimation arising due to estimation of land surface emissivity, 
atmospheric vapor content, sensor viewing angle, heterogeneous land surfaces etc. may also propagate in the estimation of surface 
energy fluxes. 

Another limitation of the study is that uncertainty in any of the key input parameters in the study like air temperature, land surface 
temperature, incoming shortwave and longwave radiations wind speed etc. can propagate to final energy flux estimations. Since, AH is 
calculated as the residual of the energy balance equation therefore, any error caused in estimating the rest of the fluxes will account 
into underestimation or overestimation of AH. In future, a sensitivity analysis of all the input parameters may assist in determination of 
parameters which has significant effect on estimation of various fluxes and furthermore, estimation of AH. Besides, there is an 
assumption made in the EO data based approaches using the energy balance equation that the phenomenon of advection is not taken 
into account considering its negligible effect. 

Due to non-availability of meteorological datasets for the study area, parameters like air temperature, dewpoint temperature, U- 
component of wind and V-component of wind used in various steps for latent and sensible heat flux calculation have been obtained 
from ERA5-Land hourly data. But this dataset is available at a very coarse spatial resolution of 0.1◦ × 0.1◦ which might cause un
certainty in calculation of fluxes. Lastly, the detailing of roughness parameters has been limited to mainly urban areas and that is also 
for one-time period only. However, roughness values especially for vegetation areas may vary from season to season and might have an 
impact on estimation of sensible and latest heat fluxes which in turn may have an impact on estimation of AH. Therefore, seasonally 
varying availability of roughness especially for agriculture and vegetation area in future might lead to improved AH estimation. 

AH values for October 2017, March 2018 and June 2018 are observed to be the highest using Method-2 as compared to the rest of 
the two methods. The possible reason for the same can be that the Zom values in this method have been inferred from the literature 
which is mostly available for developed countries in Mediterranean climate and a single value for the entire LULC class has been 
assigned. Nevertheless, availability of LULC-wise roughness values in Indian or similar climate regions in the future may improve the 
result obtained from this method as well. 

AH values obtained for agriculture and vegetation classes also show positive values in October 2017 and March 2018. This might be 
attributed to the limitation faced in performing detailed LULC classification, significant transportation and human activities due to 
dense population in surrounding areas and proximity to the megacity. Besides, the study region has a presence of thousands of brick 
kiln in and its close surroundings in the periphery of the urban core which might have been classified into agriculture and bare soil due 
to which the mean AH for these classes is also showing high values. However, in absence of detailed spatial data it is difficult to 
determine exact number of brick kilns in selected study area. Uncertainty in calculating sensible heat flux and latent heat flux due to 
any one of the input parameters as discussed earlier might also affect the estimation of AH which is computed as residual of SEB 
equation. 

Waste heat from residential areas, commercial areas, industries and transportation services contribute to the anthropogenic heat 
[45]. But the limitation of EO-data based approach is that it cannot account for details like building energy emissions and vehicular 
emissions separately because the set of equations used to derive urban energy fluxes in EO-data based approach do not use such details 
for input. For such a detailed approach of AH estimation, inventory approaches or building energy use approaches can be used if 
energy consumption-emission data of buildings, industries, transportation and human metabolism can be gathered. At present, such 
detailed datasets are not available for Indian cities however, in future with availability of data other approaches or a combination of 
approaches can be applied. 

6. Conclusion 

EO data potential for estimation of spatial distribution of AH and surface energy fluxes is well demonstrated in this study for an 
Indian urban area. The study also discusses various challenges, limitations and uncertainties in computation of input parameters which 
impacts the estimation of AH from EO data. However, in absence of detailed inventory data at finer scales, AH from EO data is one of 
the best alternative as it provides better spatial distribution with high spatial resolution. Hence, study has enormous potential to be 
replicated in urban areas of developing region of similar characteristics which experience non-availability of detailed information on 
population, transportation and activities at finer scales, mandatory to use the inventory based approaches. Net radiation and sensible 
heat flux values estimated from EO-based approach are found to have close correspondence with ground observations of Large 
Aperture Scintillometer (LAS) setup for all the three methods. Additionally, the spatial distribution of surface energy fluxes and AH was 
found to be better in method 3 due to employment of detailed urban roughness values obtained using VHRS Optical stereo; followed by 
results of method 1 that uses a single urban roughness value for the entire urban area. Hence, it was concluded that the usage of 
roughness values estimated with fine scale urban parameterization leads to better estimation of anthropogenic heat however, in 
absence of such meticulous data the use of single urban roughness value is also recommended. However, due to difference in approach 
for estimation of fluxes (LAS setup computes latent heat flux as residual while EO based approach computes AH as residual), conclusive 
results could not be drawn with respect to aptness of a single method. 

The present study uses Landsat 8 data for estimating AH using EO data based approach. In future, the applicability of these three 
methods can be checked with any other satellite offering data from which the surface energy balance equation variables can be 
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derived. Apart from change in datasets, in future these methods may be applied to other study regions in India to assess the uncertainty 
of the three methods. In this study, EO data of only instantaneous time at the satellite overpass has been employed to estimate the AH 
for each of the three time periods (October 2017, March 2018 and June 2018). As a future scope of research, long term trend analysis of 
spatio-variation in AH for day vs night, hourly variation, daily aggregates, annual trend etc. can be conducted. This may assist in better 
understanding of the influence of urban form and geometry on micro climatic variation, Urban Heat Island (UHI), spatial variation of 
temperatures and hot spots etc. in urban areas. Besides, detailed spatial information on AH can be ingested in high resolution urban 
weather and climate models such as Weather research and Forecasting model, Urban Canopy Models etc. for improved weather 
forecasts in urban areas. Methods offering improved accuracy of spatially distributed AH estimation will eventually lead to refined 
canopy layer and UHI modelling results and their understanding. It is expected that AH estimation will also play an important role in 
formulating policies, regulations and action plans to take measures for climate action. 
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